A CYCLOAODITION ROUTE TO 14-HYDROXYSTEROIDS

Gerald Kirsch, Roland Golde, and Giinter Neef*

Research Laboratories of Schering AG. D-1000 Berlin 65, Federal Republic of Germany

SUHMARY: Steroidal 14,16-dienolacetates are stereoselectively converted to either 14R- or 14a-hydroxy steroids by a reaction sequence based on [4+2] cycloaddition with benzyl nitroso**formate.**

Although chemical 1) and microbiological') procedures exist to introduce a 14-hydroxy group into the steroid skeleton, there is. an obvious need for more general methodology and for a better control of stereoselectivity.

Benzyl nitrosoformate 2 generated in situ by tetrabutyl ammonium periodate oxidation of benzyl-N-hydroxycarbamate³⁾ regioselectively added to dienol**acetate 1 with formation of two stereoisomeric cycloadducts 3a.b. Surpri** s ingly, α -adduct $3a^5$ ⁾ turned out to be the major component - a result in **marked contrast to the exclusive formation of O-face adducts from type 1 4) dienes and various other dienophiles** .

Obviously, chromatographic separation of 3a,b and hydrogenation would lead to lla-hydroxy androstane 4 and, in a less economic fashion, to 14R-hydroxy isomer 5. However, the nonstereoselective cycloaddition step made this approach unattractive.

The procedure became noteworthy after we found experimental conditions to transform the total isomeric mixture 3a.b to either t4R-hydroxy derivative 5 or to 14o-hydroxy epimer 4.

Upon heating the crude reaction product 3a,b in methanol (10 h, reflux) both isomers underwent conversion to 14B-oximino substituted enone 6⁵⁾ whic by palladium-catalyzed hydrogenation was transformed to 14R-hydroxy androstane 5 in an excellent overall yield (87 % based on 1).

As a next step, we separated 3a,b by silicagel chromatography in order to subje'ct both isomers individually to solvolytic conditions.

a-Adduct 3a reacted very sluggishly in methanol requiring a 10 hour reflux period for full transformation to enone 6. Pure R-adduct 3b5)rapidly (metha nol, reflux, 20 min) underwent conversion to a mixture of 6 and a-adduct 3a

There are two conclusions to be drawn from these experiments:

- **a. chemoselectivity: a-adduct 3a is remarkably stable towards methanolysis whereas R-adduct 3b is readily solvolyzed with formation of enone 6. The formation of 6 from a-adduct 3a is explained by a retro Diels-Alder process and recycloaddition to give an equilibrium mixture 3a,b from which 3b is removed by methanolysis.**
- **b. thermodynamic stability: the observation of products 6 and 3a after short methanol treatment of pure 3b clearly demonstrates that R-face adduct 3b, besides being rapidly solvolyzed, isomerizes with formation of a-adduct** 3a. **In order to exclude the solvolytic process, we heated isomer 3b in toluene (20 min, 80 "C) obtaining a mixture 3a,b in a ratio of 9:l in favor of the a-isomer** 3a.

With these results in mind it became quite obvious how to proceed experimentally in order to obtain either isomer in almost quantitative yield. AS described above, methanolysis of a cycloadduct mixture 3a,b will lead to 140-hydroxy derivative 5 via intermediate 6, irrespective of the ratio 3a:3b. Alternatively, 14a-hydroxyandrostane 4 is obtained by a normal workup of cycloaddition product 3a,b crystallization of which from diisopropyl ether giving a first crop (60 %) of pure a-adduct 3a. The mother liquor is concentrated and heated shortly in toluene (20 min. 80 "C) to allow equilibration. Subsequent crystallization and chromatography yield another 29 % of 3a which by palladium-catalyzed hydrogenation in ethanol is smoothly converted into 14a-hydroxy androstane 4.

In order to make sure that the formation of 14R-oximino substituted enone 6 from a-adduct 3a was not the result of an unknown intramolecular rearrangement, we repeated the process of methanolysis with 3a in the presence of a competing diene 7. The detection of enone 8⁵⁾ in the product mixture clearly supports the mechanistic interpretation given above.

 $(molar ratio 3a:7 = 1 : 1)$

Acknowledgments: We thank Prof. E. Winterfeldt, University of Hannover, for helpful comments. Thanks are due to Dr. G.A. Hoyer, Schering AG, for his support in the interpretation of spectroscopic data.

REFERENCES

- **I. a) F. Sondheimer, S. Burstein, and R. Mechoulam; J. Am. Chem. Sot. 82, 3209 (1960).**
	- **b) A. Afonso; Can. J. Chem. 47, 3693 (1969).**
	- **c) G. Groszek, M.M. Kabat, A. Kurek, M. Masuyk, and J. Wicha; Bull. Pol. Acad. Sci. Chem. 34, 314 (1986).**
	- **d) G. Schubert and K. Ponsold; Pharmazie 34, 323 (1979).**
	- **e) P. Weltel, B. Janssen, and H. Duddeck; Liebigs Ann. Chem. 1981, 546.**
- **2. J. de Flines: The Use of Biocatalysis in the Synthesis and Transformation of Steroids, in Fermentation Advances, ed. D. Perlman, Academic Press New York, London 1969, pp. 385-390.**
- **3. a) G.W. Kirby; Chem. Sot. Rev. 6, 1 (1977).**
	- **b) J.E. Baldwin, P.D. Bailey, G. Gallacher, M. Otsuka, K.A. Singleton, and P.M. Wallace; Tetrahedron 40, 3695 (198;).**
- **4. a) J.R. Bull and R.I. Thomson; J. Chem. Sot., Chem. Commun. 1982, 451. b) 5. Scholz, H. Hofmeister, G. Neef, E. Ottow, C. Scheidges, and R. Wiechert; Liebigs Ann. Chem. 1989, 151.**
- **5. All compounds were characterized by nmr (300 MHz), ir, uv and mass spectra.**

3a: m.p. 145-147°C (from ethyl acetate/diisopropyl ether), $\left[\alpha\right]_0^{20}$ -60.9° $(CHCI₃, c = 0.505)$. nmr $(CDC1₃)$: $\delta = 0.95$ ppm (s, 3H, H-18), 1.01 (s, **3H, H-19), 1.96 (s, 3H, COCH3), 2.03 (s, 3H, COCH3), 4.59 (m, lH, H-3), 5.07 (d, J = 11 Hz, IH, benzylic). 5.16 (d, J = 11 Hz, lH, bentylic), 5.43 (m, iH, H-6), 6.22 (d, J = 5.5 Hz, 1H. H-16), 6.90 (d, J = 5.5 Hz, IH. H-15), 7.34 (m, 5H, aromatic).**

3b: oil, nmr (CDCl₃): δ = 1.03 ppm (s, 3H, H-19), 1.17 (s, 3H, H-18), **3.03 (s, 6H, CDCH3), 4.59 (m, IH. H-3), 5.14 (s, 2H, benzylic), 5.43 (m. lH, H-6), 6.31 (d, J = 5.5 Hz, IH, H-16), 6.68 (d, J = 5.5 Hz, lH, H-15), 7.33 (m. 5H, aromatic).**

6: $m.p. 183-184°C$ (from ethyl acetate/diisopropyl ether), $[\alpha]_D^{20}$ -47.3° $(CHCI₃, c = 0.505)$. nmr $(CDC1₃)$: $\delta = 1.00$ ppm (s, 3H, H-19), 1.12 (s, **3H, H-18), 2.03 (s, 3H, COCH₃), 4.58 (m, 1H, H-3), 5.04 (d, J = 11 Hz, 1H, benzylic), 5.13 (d, J = 11 Hz, 1H, benzylic), 5.46 (m, 1H, H-6), 6.31 (d, J = 5.5 Hz, lH, H-16), 6.78 (s, IH, NH , 7.34 (m, 5H, aromatic), 7.49 (d, J = 5.5 Hz, IH, H-15).**

8: m.p. 178-179°C (from methanol), $[\alpha]_D^{20}$ **+86.6° (CHCl₃, c = 0.51), nmr** $(CDC1₃)$: 6 = 1.14 ppm (s, 3H, H-18), 3.77 (s, 3H, 0CH₃), 5.09 (d, J = **11 HZ, lH, benzylic), 5.18 (d, J = 11 Hz, IH,** benzylic), **6.31 (d, J = 4 Hz, IH, H-16), 6.62 (m, lH, H-4), 6.71 (m, lH, H-2), 6.92 (s, IH, NH), 7.10 (d, J = 4 Hz, lH, H-l), 7.33 (m. 6H, aromatic and H-15).**

(Received in Germany 19 June 1989)